8,884 research outputs found

    Compressive Pattern Matching on Multispectral Data

    Full text link
    We introduce a new constrained minimization problem that performs template and pattern detection on a multispectral image in a compressive sensing context. We use an original minimization problem from Guo and Osher that uses L1L_1 minimization techniques to perform template detection in a multispectral image. We first adapt this minimization problem to work with compressive sensing data. Then we extend it to perform pattern detection using a formal transform called the spectralization along a pattern. That extension brings out the problem of measurement reconstruction. We introduce shifted measurements that allow us to reconstruct all the measurement with a small overhead and we give an optimality constraint for simple patterns. We present numerical results showing the performances of the original minimization problem and the compressed ones with different measurement rates and applied on remotely sensed data.Comment: Published in IEEE Transactions on Geoscience and Remote Sensin

    Towards Low Cost Coupling Structures for Short-Distance Optical Interconnections

    Get PDF
    The performance of short distance optical interconnections in general relies very strongly on coupling structures, since they will determine the overall efficiency of the system to a large extent. Different configurations can be considered and a variety of manufacturing technologies can be used. We present two different discrete and two different integrated coupling components which can be used to deflect the light beam over 90 degrees and can play a crucial role when integrating optical interconnections in printed circuit boards. The fabrication process of the different coupling structures is discussed and experimental results are shown. The main characteristics of the coupling structures are given. The main advantages and disadvantages of the different components are discussed

    An international prospective general population-based study of respiratory work disability

    Get PDF
    Background: Previous cross-sectional studies have shown that job change due to breathing problems at the workplace (respiratory work disability) is common among adults of working age. That research indicated that occupational exposure to gases, dust and fumes was associated with job change due to breathing problems, although causal inferences have been tempered by the cross-sectional nature of previously available data. There is a need for general population-based prospective studies to assess the incidence of respiratory work disability and to delineate better the roles of potential predictors of respiratory work disability.Methods: A prospective general population cohort study was performed in 25 centres in 11 European countries and one centre in the USA. A longitudinal analysis was undertaken of the European Community Respiratory Health Survey including all participants employed at any point since the baseline survey, 6659 subjects randomly sampled and 779 subjects comprising all subjects reporting physician-diagnosed asthma. The main outcome measure was new-onset respiratory work disability, defined as a reported job change during follow-up attributed to breathing problems. Exposure to dusts (biological or mineral), gases or fumes during follow-up was recorded using a job-exposure matrix. Cox proportional hazard regression modelling was used to analyse such exposure as a predictor of time until job change due to breathing problems.Results: The incidence rate of respiratory work disability was 1.2/1000 person-years of observation in the random sample (95% CI 1.0 to 1.5) and 5.7/1000 person-years in the asthma cohort (95% CI 4.1 to 7.8). In the random population sample, as well as in the asthma cohort, high occupational exposure to biological dust, mineral dust or gases or fumes predicted increased risk of respiratory work disability. In the random sample, sex was not associated with increased risk of work disability while, in the asthma cohort, female sex was associated with an increased disability risk (hazard ratio 2.8, 95% CI 1.3 to 5.9).Conclusions: Respiratory work disability is common overall. It is associated with workplace exposures that could be controlled through preventive measures

    Cathodoluminescence of Rare Earth Doped Zircons. I. Their Possible Use as Reference Materials

    Get PDF
    Synthetic zircon crystals (ZrSiO4), undoped and doped with Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, were grown from a flux consisting of a mixture of Li2MoO4 and MoO3 heated to 1125°C and then cooled to 750°C. The cathodoluminescence (CL) spectra of these zircons were analyzed at room-temperature and near liquid nitrogen temperature with a CL spectrometer attached to a scanning electron microscope (SEM). This study highlights the complexity of the intrinsic emission band extending from 200 to 500 nm. The relative intensities of the major emission band centered at 230 nm (5.4 eV) and peaks of less energy were found to depend upon the crystallographic orientation of the crystals. Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+ and Tm3+-doped zircons display sharp emission peaks being characteristic of the doping rare-earth element (REE). These lines are frequently multiplets but only the average position of the peaks are reported because of the instrumental conditions used in this study. The CL intensities of the intrinsic and extrinsic features were found to depend on the crystal orientation, and numerous experimental factors such as the electron beam energy and the beam current density

    Exact reconstruction with directional wavelets on the sphere

    Get PDF
    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal component

    Female labor supply and child care

    Get PDF
    We use household income tax data to estimate a structural model of female labor supply and utilization of paid child care outside the home. We find that child care costs have little impact on the participation decision of mothers of young children. However, they influence hours of work, as well as the decision to utilize paid child care. We use our results to simulate various policy reforms. Suppressing the APE (Parental Education Aid) would cause the participation rate in our sample to rise by 4 points and the proportion of mothers using outside paid care to rise by 2 points. Examining the effects on aggregate female labor supply of other policies that affect child care costs, we generally find that intensive effects caused by changes in working time are of the same order of magnitude as extensive effects due to changes in female participation.Child Care, female labor supply, fiscal policies

    Human pulmonary responses to experimental inhalation of high concentration fine and ultrafine magnesium oxide particles.

    Get PDF
    Exposure to air polluted with particles less than 2.5 micron in size is associated epidemiologically with adverse cardiopulmonary health consequences in humans. The goal of this study was to characterize human pulmonary responses to controlled experimental high-dose exposure to fine and ultrafine magnesium oxide particles. We quantified bronchoalveolar lavage (BAL) cell and cytokine concentrations, pulmonary function, and peripheral blood neutrophil concentrations in six healthy volunteers 18 to 20 hr after inhalation of fine and ultrafine magnesium oxide particles produced from a furnace system model. We compared postexposure studies with control studies from the same six subjects. Mean +/- standard deviation (SD) cumulative magnesium dose was 4,138 +/- 2,163 min x mg/m3. By weight, 28% of fume particles were ultrafine (<0.1 micron in diameter) and over 98% of fume particles were fine (<2.5 micron in diameter). There were no significant differences in BAL inflammatory cell concentrations, BAL interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor, pulmonary function, or peripheral blood neutrophil concentrations postexposure compared with control. Our findings suggest that high-dose fine and ultrafine magnesium oxide particle exposure does not produce a measurable pulmonary inflammatory response. These findings are in marked contrast with the well-described pulmonary inflammatory response following zinc oxide particle inhalation. We conclude that fine and ultrafine particle inhalation does not result in toxicity in a generic manner independent of particle composition. Our findings support the concept that particle chemical composition, in addition to particle size, is an important determinant of respiratory effects
    corecore